About This Blog

A copy of my content from SQLBlog.com and SQLPerformance.com, plus occasional new content.
Showing posts with label Internals. Show all posts
Showing posts with label Internals. Show all posts

Sunday, 31 May 2020

Pulling Group By Above a Join

Pulling Group By Above a Join

One of the transformations available to the SQL Server query optimizer is pulling a logical Group By (and any associated aggregates) above a Join.

Visually, this means transforming a tree of logical operations from:

Group By Below Join

…to this:

Group By Above Join

The above diagrams are logical representations. They need to be implemented as physical operators to appear in an execution plan. The options are:

  • Group By
    • Hash Match Aggregate
    • Stream Aggregate
    • Distinct Sort
  • Join
    • Nested Loops Join
    • Nested Loops Apply
    • Hash Match Join
    • Merge Join

When the optimizer moves a Group By above a Join it has to preserve the semantics. The new sequence of operations must be guaranteed to return the same results as the original in all possible circumstances.

One cannot just pick up a Group By and arbitrarily move it around the query tree without risking incorrect results.

Saturday, 24 August 2019

Batch Mode Bitmap Demos

Batch Mode Bitmap Demos

This is a companion post to my main article Batch Mode Bitmaps in SQL Server. This post provides demos and illustrations to supplement the technical article.

The scripts presented here were run on SQL Server 2017 CU 16.

Sunday, 9 June 2019

Apply versus Nested Loops Join

Apply versus Nested Loops Join

SQL is a declarative language. We use SQL to write a logical query specification that defines the results we want. For example, we might write a query using either APPLY or JOIN that logically describes exactly the same results.

It is up to the query optimizer to find an efficient physical implementation of that logical requirement. SQL Server is free to choose any plan it likes, so long as the results are guaranteed to be the same as specified in the original SQL.

The optimizer is capable of transforming an apply to a join and vice versa. It generally tries to rewrite apply to join during initial compilation to maximize the searchable plan space during cost-based optimization. Having transformed an apply to a join early on, it may also consider a transformation back to an apply shape later on to assess the merits of e.g. an index loops join.

Tuesday, 15 April 2014

Cardinality Estimation for Disjunctive Predicates in SQL Server 2014

Cardinality Estimation for Disjunctive Predicates in SQL Server 2014

Introduction

Back in January 2014, I wrote an article called Cardinality Estimation for Multiple Predicates that described the cardinality estimation process for queries with multiple predicates, from the point of view of the old and new cardinality estimators.

The article describes the various behaviours and formulas involved, along with the usual sprinkling of documented and undocumented trace flags. I described the formula SQL Server 2014 uses to calculate a cardinality estimate for multiple predicates connected with AND (conjunctive predicates), which was already relatively well-known.

Despite some fairly energetic research, and basic-to-intermediate skills with Excel, I was unable to deduce a similar formula for the disjunctive case, where predicates are connected by OR. The trace flag output I describe in the other article clearly showed that exponential backoff was used in the new 2014 cardinality estimator, but the precise formula eluded me.

Saturday, 31 August 2013

Nested Loops Prefetching

Nested Loops Prefetching

Nested loops join query plans can be a lot more interesting (and complicated) than is commonly realized.

One query plan area I get asked about a lot is prefetching. It is not documented in full detail anywhere, so this seems like a good topic to address in a blog post.

The examples used in this article are based on questions asked by Adam Machanic.

Wednesday, 21 August 2013

Incorrect Results Caused By Adding an Index

Incorrect Results Caused By Adding an Index

Say you have the following two tables, one partitioned and one not:

CREATE PARTITION FUNCTION PF (integer)
AS RANGE RIGHT
FOR VALUES (1000, 2000, 3000, 4000, 5000);

CREATE PARTITION SCHEME PS
AS PARTITION PF
ALL TO ([PRIMARY]);

-- Partitioned
CREATE TABLE dbo.T1
(
    T1ID    integer NOT NULL,
    SomeID  integer NOT NULL,

    CONSTRAINT [PK dbo.T1 T1ID]
        PRIMARY KEY CLUSTERED (T1ID)
        ON PS (T1ID)
);

-- Not partitioned
CREATE TABLE dbo.T2
(
    T2ID    integer IDENTITY (1,1) NOT NULL,
    T1ID    integer NOT NULL,

    CONSTRAINT [PK dbo.T2 T2ID]
        PRIMARY KEY CLUSTERED (T2ID)
        ON [PRIMARY]
);

Monday, 8 July 2013

Working Around Missed Optimizations

Working Around Missed Optimizations

In my last post, we saw how a query featuring a scalar aggregate could be transformed by the optimizer to a more efficient form. As a reminder, here’s the schema again:

Wednesday, 26 June 2013

Optimization Phases and Missed Opportunities

Optimization Phases and Missed Opportunities

There are two complementary skills that are very useful in query tuning. One is the ability to read and interpret execution plans. The second is knowing a bit about how the query optimizer works to translate SQL text into an execution plan.

Putting the two things together can help us spot times when an expected optimization was not applied, resulting in an execution plan that is not as efficient as it could be.

The lack of documentation around exactly which optimizations SQL Server can apply (and in what circumstances) means that a lot of this comes down to experience, however.

Tuesday, 11 June 2013

Hello Operator, My Switch Is Bored

Hello Operator, My Switch Is Bored

This post is in two parts. The first part looks at the Switch execution plan operator. The second part is about an invisible plan operator and cardinality estimates on filtered indexes.

Thursday, 4 April 2013

Optimizer Limitations with Filtered Indexes

Optimizer Limitations with Filtered Indexes

One of the filtered index use cases mentioned in the product documentation concerns a column that contains mostly NULL values. The idea is to create a filtered index that excludes the NULLs, resulting in a smaller nonclustered index that requires less maintenance than the equivalent unfiltered index.

Another popular use of filtered indexes is to filter NULLs from a UNIQUE index, giving the behaviour users of other database engines might expect from a default UNIQUE index or constraint: Uniqueness enforced only for non-NULL values.

Unfortunately, the query optimizer has limitations where filtered indexes are concerned. This post looks at a couple of less well-known examples.

Wednesday, 20 March 2013

The Problem with Window Functions and Views

The Problem with Window Functions and Views

Introduction

Since their introduction in SQL Server 2005, window functions like ROW_NUMBER and RANK have proven to be extremely useful in solving a wide variety of common T-SQL problems. In an attempt to generalize such solutions, database designers often look to incorporate them into views to promote code encapsulation and reuse.

Unfortunately, a limitation in the SQL Server query optimizer often means that views1 containing window functions do not perform as well as expected. This post works through an illustrative example of the problem, details the reasons, and provides a number of workarounds.

Friday, 8 March 2013

Execution Plan Analysis: The Mystery Work Table

Execution Plan Analysis: The Mystery Work Table

I love SQL Server execution plans. It is often easy to spot the cause of a performance problem just by looking at one closely. That task is considerably easier if the plan includes run-time information (a so-called ‘actual’ execution plan), but even a compiled plan can be very useful.

Nevertheless, there are still times when the execution plan does not tell the whole story, and we need to think more deeply about query execution to really understand a problem. This post looks at one such example, based on a question I answered.

Friday, 1 February 2013

A creative use of IGNORE_DUP_KEY

A creative use of IGNORE_DUP_KEY

Let’s say you have a big table with a clustered primary key, and an application that inserts batches of rows into it. The nature of the business is that the batch will inevitably sometimes contain rows that already exist in the table.

The default SQL Server INSERT behaviour for such a batch is to throw error 2627 (primary key violation), terminate the statement, roll back all the inserts (not just the rows that conflicted) and keep any active transaction open:

Saturday, 26 January 2013

Optimizing T-SQL queries that change data

Optimizing T-SQL queries that change data

Most tuning efforts for data-changing operations concentrate on the SELECT side of the query plan. Sometimes people will also look at storage engine considerations (like locking or transaction log throughput) that can have dramatic effects. A number of common practices have emerged, such as avoiding large numbers of row locks and lock escalation, splitting large changes into smaller batches of a few thousand rows, and combining a number of small changes into a single transaction in order to optimize log flushes.

This is all good, but what about the data-changing side of the query plan — the INSERT, UPDATE, DELETE, or MERGE operation itself — are there any query processor considerations we should take into account? The short answer is yes.

The query optimizer considers different plan options for the write-side of an execution plan, though there isn’t a huge amount of T-SQL language support that allows us to affect these choices directly. Nevertheless, there are things to be aware of, and things we can look to change.

Friday, 17 August 2012

Temporary Table Caching Explained

Temporary Table Caching Explained

SQL Server (since 2005) caches temporary tables and table variables referenced in stored procedures for reuse, reducing contention on tempdb allocation structures and catalogue tables.

A number of things can prevent this caching (none of which are allowed when working with table variables):

  • Named constraints (bad idea anyway, since concurrent executions can cause a name collision)
  • DDL after creation (though what is considered DDL is interesting)
  • Creation using dynamic SQL
  • Table created in a different scope
  • Procedure executed using WITH RECOMPILE

Temporary objects are often created and destroyed at a high rate in production systems, so caching can be an important optimization.

Thursday, 3 May 2012

Parallel Execution Plans Suck

Parallel Execution Plans Suck

Summary: A deep dive into SQL Server parallelism, and a potential performance problem with parallel plans that use TOP.

Tuesday, 1 May 2012

Query Optimizer Deep Dive - Part 4

Query Optimizer Deep Dive - Part 4

This is the final part in a series of posts based on the content of the Query Optimizer Deep Dive presentations I have given over the last month or so at the Auckland SQL Users’ Group, and SQL Saturday events in Wellington, New Zealand and Adelaide, Australia.

Links to other parts of this series: Part 1 Part 2 Part 3

Beating the Optimizer

Our AdventureWorks test query produces an optimized physical execution plan that is quite different from the logical form of the query.

The estimated cost of the execution plan shown below is 0.0295 units.

Optimizer plan

Since we know the database schema very well, we might wonder why the optimizer did not choose to use the unique nonclustered index on Name in the Product table to filter rows based on the LIKE predicate.

Sunday, 29 April 2012

Query Optimizer Deep Dive – Part 3

Query Optimizer Deep Dive – Part 3

This is the third in a series of posts based on the content of the Query Optimizer Deep Dive presentations I have given over the last month or so at the Auckland SQL Users’ Group, and SQL Saturday events in Wellington, New Zealand and Adelaide, Australia.

Links to other parts of this series: Part 1 Part 2 Part 4

Storage of Alternative Plans

We saw in part 2 how optimizer rules are used to explore logical alternatives for parts of the query tree, and how implementation rules are used to find physical operations to perform each logical steps.

To keep track of all these options, the cost-based part of the SQL Server query optimizer uses a structure called the Memo. This structure is part of the Cascades general optimization framework developed by Goetz Graefe.

Saturday, 28 April 2012

Query Optimizer Deep Dive – Part 2

Query Optimizer Deep Dive – Part 2

This is the second in a series of posts based on the content of the Query Optimizer Deep Dive presentations I have given over the last month or so at the Auckland SQL Users’ Group, and SQL Saturday events in Wellington, New Zealand and Adelaide, Australia.

Links to other parts of this series: Part 1 Part 3 Part 4

Cost-Based Optimization Overview

The input to cost-based optimization is a tree of logical operations produced by the previous optimization stages discussed in part one.

Cost-based optimization takes this logical tree, explores logical alternatives (different logical tree shapes that will always produce the same results), generates physical implementations, assigns an estimated cost to each, and finally chooses the cheapest physical option overall.

The goal of cost-based optimization is not to find the best possible physical execution plan by exploring every possible alternative. Rather, the goal is to find a good plan quickly.

Query Optimizer Deep Dive - Part 1

Query Optimizer Deep Dive - Part 1

This is the first in a series of posts based on the content of the Query Optimizer Deep Dive presentations I have given over the last month or so at the Auckland SQL Users’ Group, and SQL Saturday events in Wellington, New Zealand and Adelaide, Australia.

Links to other parts of this series: Part 2 Part 3 Part 4

Introduction

The motivation behind writing these sessions is finding that relatively few people have a good intuition for the way the optimizer works. This is partly because the official documentation is rather sparse, and partly because what information is available is dispersed across many books and blog posts.

The content presented here is very much geared to my preferred way of learning. It shows the concepts in what seems to me to be a reasonably logical sequence, and then provides tools to enable the interested reader to explore further, if desired.