About This Blog

Including my content from SQLBlog.com and some from SQLPerformance.com

Wednesday 21 August 2013

Incorrect Results Caused By Adding an Index

Incorrect Results Caused By Adding an Index

Say you have the following two tables, one partitioned and one not:

CREATE PARTITION FUNCTION PF (integer)
AS RANGE RIGHT
FOR VALUES (1000, 2000, 3000, 4000, 5000);

CREATE PARTITION SCHEME PS
AS PARTITION PF
ALL TO ([PRIMARY]);

-- Partitioned
CREATE TABLE dbo.T1
(
    T1ID    integer NOT NULL,
    SomeID  integer NOT NULL,

    CONSTRAINT [PK dbo.T1 T1ID]
        PRIMARY KEY CLUSTERED (T1ID)
        ON PS (T1ID)
);

-- Not partitioned
CREATE TABLE dbo.T2
(
    T2ID    integer IDENTITY (1,1) NOT NULL,
    T1ID    integer NOT NULL,

    CONSTRAINT [PK dbo.T2 T2ID]
        PRIMARY KEY CLUSTERED (T2ID)
        ON [PRIMARY]
);

Wednesday 24 July 2013

Two Partitioning Peculiarities

Two Partitioning Peculiarities

Table partitioning in SQL Server is essentially a way of making multiple physical tables (row sets) look like a single table. This abstraction is performed entirely by the query processor, a design that makes things simpler for users, but which makes complex demands of the query optimizer.

This post looks at two examples which exceed the optimizer’s abilities in SQL Server 2008 onward.

Thursday 18 July 2013

Aggregates and Partitioning

Aggregates and Partitioning

The changes in the internal representation of partitioned tables between SQL Server 2005 and SQL Server 2008 resulted in improved query plans and performance in the majority of cases (especially when parallel execution is involved).

Unfortunately, the same changes caused some things that worked well in SQL Server 2005 to suddenly not work so well in SQL Server 2008 and later.

This post looks at a one example where the SQL Server 2005 query optimizer produced a superior execution plan compared with later versions.

Monday 8 July 2013

Working Around Missed Optimizations

Working Around Missed Optimizations

In my last post, we saw how a query featuring a scalar aggregate could be transformed by the optimizer to a more efficient form. As a reminder, here’s the schema again:

Wednesday 26 June 2013

Optimization Phases and Missed Opportunities

Optimization Phases and Missed Opportunities

There are two complementary skills that are very useful in query tuning. One is the ability to read and interpret execution plans. The second is knowing a bit about how the query optimizer works to translate SQL text into an execution plan.

Putting the two things together can help us spot times when an expected optimization was not applied, resulting in an execution plan that is not as efficient as it could be.

The lack of documentation around exactly which optimizations SQL Server can apply (and in what circumstances) means that a lot of this comes down to experience, however.

Monday 17 June 2013

Improving Partitioned Table Join Performance

Improving Partitioned Table Join Performance

The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example of that, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing.

Tuesday 11 June 2013

Hello Operator, My Switch Is Bored

Hello Operator, My Switch Is Bored

This post is in two parts. The first part looks at the Switch execution plan operator. The second part is about an invisible plan operator and cardinality estimates on filtered indexes.

Thursday 4 April 2013

Optimizer Limitations with Filtered Indexes

Optimizer Limitations with Filtered Indexes

One of the filtered index use cases mentioned in the product documentation concerns a column that contains mostly NULL values. The idea is to create a filtered index that excludes the NULLs, resulting in a smaller nonclustered index that requires less maintenance than the equivalent unfiltered index.

Another popular use of filtered indexes is to filter NULLs from a UNIQUE index, giving the behaviour users of other database engines might expect from a default UNIQUE index or constraint: Uniqueness enforced only for non-NULL values.

Unfortunately, the query optimizer has limitations where filtered indexes are concerned. This post looks at a couple of less well-known examples.

Wednesday 20 March 2013

The Problem with Window Functions and Views

The Problem with Window Functions and Views

Introduction

Since their introduction in SQL Server 2005, window functions like ROW_NUMBER and RANK have proven to be extremely useful in solving a wide variety of common T-SQL problems. In an attempt to generalize such solutions, database designers often look to incorporate them into views to promote code encapsulation and reuse.

Unfortunately, a limitation in the SQL Server query optimizer often means that views1 containing window functions do not perform as well as expected. This post works through an illustrative example of the problem, details the reasons, and provides a number of workarounds.

Note: The limitation described here was first fixed in SQL Server 2017 CU 30. Optimizer fixes must be enabled using trace flag 4199 or the database scoped configuration option. The fix is standard behaviour without optimizer hotfixes under compatibility level 160 (SQL Server 2022).

Friday 8 March 2013

Execution Plan Analysis: The Mystery Work Table

Execution Plan Analysis: The Mystery Work Table

I love SQL Server execution plans. It is often easy to spot the cause of a performance problem just by looking at one closely. That task is considerably easier if the plan includes run-time information (a so-called ‘actual’ execution plan), but even a compiled plan can be very useful.

Nevertheless, there are still times when the execution plan does not tell the whole story, and we need to think more deeply about query execution to really understand a problem. This post looks at one such example, based on a question I answered.